
Compartmental models in epidemiology

Compartmental models are a technique used to simplify the mathematical modelling of infectious disease. The

population is divided into compartments, with the assumption that every individual in the same compartment has

the same characteristics. Its origin is in the early 20th century, with an important early work being that of Kermack

and McKendrick in 1927.
[1]

The models are usually investigated through ordinary differential equations (which are deterministic), but can also

be viewed in a stochastic framework, which is more realistic but also more complicated to analyze.

Compartmental models may be used to predict properties of how a disease spreads, for example the prevalence (total

number of infected) or the duration of an epidemic. Also, the model allows for understanding how different

situations may affect the outcome of the epidemic, e.g., what the most efficient technique is for issuing a limited

number of vaccines in a given population.
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The SIR model is one of the simplest compartmental models, and many models are derivations of this basic form.

The model consists of three compartments: S for the number of susceptible, I for the number of infectious, and R for

the number recovered (or immune) individuals. This model is reasonably predictive for infectious diseases which are

transmitted from human to human, and where recovery confers lasting resistance, such as measles, mumps and

rubella.

These variables (S, I, and R) represent the number of people in each

compartment at a particular time. To represent that the number of susceptible,

infected and recovered individuals may vary over time (even if the total

population size remains constant), we make the precise numbers a function of t

(time): S(t), I(t) and R(t). For a specific disease in a specific population, these

functions may be worked out in order to predict possible outbreaks and bring

them under control.

As implied by the variable function of t, the model is dynamic in that the

numbers in each compartment may fluctuate over time. The importance of this

dynamic aspect is most obvious in an endemic disease with a short infectious

period, such as measles in the UK prior to the introduction of a vaccine in 1968.

Such diseases tend to occur in cycles of outbreaks due to the variation in number of susceptibles (S(t)) over time.

During an epidemic, the number of susceptible individuals falls rapidly as more of them are infected and thus enter

the infectious and recovered compartments. The disease cannot break out again until the number of susceptibles has

built back up, e.g. as a result of offspring being born into the susceptible compartment.

Each member of the population typically progresses from susceptible to

infectious to recovered. This can be shown as a flow diagram in which the boxes

represent the different compartments and the arrows the transition between

compartments, i.e.

The SIR model
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For the full specification of the model, the arrows should be labeled with the transition rates between compartments.

Between S and I, the transition rate is βI, where β is the average number of contacts per person per time, multiplied

by the probability of disease transmission in a contact between a susceptible and an infectious subject.

Between I and R, the transition rate is γ (simply the rate of recovered or dead, that is, number of recovered or dead

during one day divided by the total number of infected on that same day, supposing "day" is the time unit). If the

duration of the infection is denoted D, then γ = 1/D, since an individual experiences one recovery in D units of time.

It is assumed that the permanence of each single subject in the epidemic states is a random variable with exponential

distribution. More complex and realistic distributions (such as Erlang distribution) can be equally used with few

modifications.

The dynamics of an epidemic, for example the flu, are often much faster than the dynamics of birth and death,

therefore, birth and death are often omitted in simple compartmental models. The SIR system without so-called vital

dynamics (birth and death, sometimes called demography) described above can be expressed by the following set of

ordinary differential equations:
[2]

where  is the stock of susceptible population,  is the stock of infected,  is the stock of recovered population, and 

 is the sum of these three.

This model was for the first time proposed by O. Kermack and Anderson Gray McKendrick as a special case of what

we now call Kermack–McKendrick theory, and followed work McKendrick had done with Ronald Ross.

This system is non-linear, however it is possible to derive its analytic solution in closed-form.
[3]

 Other numerical

tools include Monte Carlo methods, such as the Gillespie algorithm.

Firstly note that from:

it follows that:

expressing in mathematical terms the constancy of population . Note that the above relationship implies that one

need only study the equation for two of the three variables.

Secondly, we note that the dynamics of the infectious class depends on the following ratio:
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the so-called basic reproduction number (also called basic reproduction ratio). This ratio is derived as the expected

number of new infections (these new infections are sometimes called secondary infections) from a single infection in

a population where all subjects are susceptible.
[4][5]

 This idea can probably be more readily seen if we say that the

typical time between contacts is , and the typical time until recovery is . From here it follows

that, on average, the number of contacts by an infected individual with others before the infected has recovered is: 

By dividing the first differential equation by the third, separating the variables and integrating we get

(where  and  are the initial numbers of, respectively, susceptible and recovered subjects). Thus, in the limit 

, the proportion of recovered individuals obeys the following transcendental equation

This equation shows that at the end of an epidemic, unless  not all individuals of the population have

recovered, so some must remain susceptible. This means that the end of an epidemic is caused by the decline in the

number of infected individuals rather than an absolute lack of susceptible subjects. The role of the basic reproduction

number is extremely important. In fact, upon rewriting the equation for infectious individuals as follows:

it yields that if:

then:

i.e., there will be a proper epidemic outbreak with an increase of the number of the infectious (which can reach a

considerable fraction of the population). On the contrary, if

then

i.e., independently from the initial size of the susceptible population the disease can never cause a proper epidemic

outbreak. As a consequence, it is clear that the basic reproduction number is extremely important.

Note that in the above model the function:

The force of infection
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models the transition rate from the compartment of susceptible individuals to the compartment of infectious

individuals, so that it is called the force of infection. However, for large classes of communicable diseases it is more

realistic to consider a force of infection that does not depend on the absolute number of infectious subjects, but on

their fraction (with respect to the total constant population ):

Capasso and, afterwards, other authors have proposed nonlinear forces of infection to model more realistically the

contagion process.

In 2014, Harko T. et al.
[6]

 derived an exact analytical solution to the SIR model. In the case without vital dynamics

setup, for , etc., it corresponds to the following time parametrization

for

with initial conditions

where  satisfies . By the transcendental equation for  above, it follows that 

, if  and .

An equivalent analytical solution was found by Miller
[7][8]

 yields

Here  can be interpreted as the expected number of transmissions an individual has received by time . The two

solutions are related by .

Effectively the same result can be found in the original work by Kermack and McKendrick.
[9]

Consider a population characterized by a death rate  and birth rate , and where a communicable disease is

spreading. The model with mass-action transmission is:

Exact analytical solutions to the SIR model

The SIR model with vital dynamics and constant population



Susceptibles and infected get
equilibrated.

for which the disease-free equilibrium (DFE) is:

In this case, we can derive a basic reproduction number:

which has threshold properties. In fact, independently from biologically meaningful initial values, one can show that:

The point EE is called the Endemic Equilibrium. With heuristic arguments, one may show that  may be read as

the average number of infections caused by a single infectious subject in a wholly susceptible population, the above

relationship biologically means that if this number is less than or equal to one the disease goes extinct, whereas if this

number is greater than one the disease will remain permanently endemic in the population.

Some infections, for example those from the common cold and influenza, do not

confer any long lasting immunity. Such infections do not give immunization

upon recovery from infection, and individuals become susceptible again.

We have the model:

Note that denoting with N the total population it holds that:

The SIS model
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it follows that:

i.e. the dynamics of infectious is ruled by a logistic equation, so that :

It is possible to find an analytical solution to this model (by making a transformation of variables:  and

substituting this into the mean-field equations),
[10]

 such that the basic reproduction rate is greater than unity. The

solution is given as

where  is the endemic infected population, , and . As the system is

assumed to be closed, the susceptible population is then .

For many infections, including measles, babies are not born into the susceptible compartment but are immune to the

disease for the first few months of life due to protection from maternal antibodies (passed across the placenta and

additionally through colostrum). This is called passive immunity. This added detail can be shown by including an M

class (for maternally derived immunity) at the beginning of the model

To indicate this mathematically, an additional compartment is added, M(t), which results in the following differential

equations:

Elaborations on the basic SIR model
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Some people who have had an infectious disease such as tuberculosis never completely recover and continue to carry

the infection, whilst not suffering the disease themselves. They may then move back into the infectious compartment

and suffer symptoms (as in tuberculosis) or they may continue to infect others in their carrier state, while not

suffering symptoms. The most famous example of this is probably Mary Mallon, who infected 22 people with typhoid

fever. The carrier compartment is labelled C.

For many important infections there is a significant incubation period during which individuals have been infected

but are not yet infectious themselves. During this period the individual is in compartment E (for exposed).

Assuming that the incubation period is a random variable with exponential distribution with parameter  (i.e. the

average incubation period is ), and also assuming the presence of vital dynamics with birth rate  equal to death

rate , we have the model:

We have  but this is only constant because of the (degenerate) assumption that birth and

death rates are equal; in general  is a variable.

For this model, the basic reproduction number is:

Carrier state

The SEIR model
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Similarly to the SIR model, also in this case we have a Disease-Free-Equilibrium (N,0,0,0) and an Endemic

Equilibrium EE, and one can show that, independently from biologically meaningful initial conditions

it holds that:

In case of periodically varying contact rate  the condition for the global attractiveness of DFE is that the

following linear system with periodic coefficients:

is stable (i.e. it has its Floquet's eigenvalues inside the unit circle in the complex plane).

The SEIS model takes into consideration the exposed or latent period of the disease, giving an additional

compartment, E(t).

In this model an infection does not leave any immunity thus individuals that have recovered return to being

susceptible again, moving back into the S(t) compartment. The following differential equations describe this model:

For the case of a disease, with the factors of passive immunity, and a latency period there is the MSEIR model.

The SEIS model

The MSEIR model



An MSEIRS model is similar to the MSEIR, but the immunity in the R class would be temporary, so that individuals

would regain their susceptibility when the temporary immunity ended.

It is well known that the probability of getting a disease is not constant in time. Some diseases are seasonal, such as

the common cold viruses, which are more prevalent during winter. With childhood diseases, such as measles,

mumps, and rubella, there is a strong correlation with the school calendar, so that during the school holidays the

probability of getting such a disease dramatically decreases.

As a consequence, for many classes of diseases one should consider a force of infection with periodically ('seasonal')

varying contact rate

with period T equal to one year.

Thus, our model becomes

(the dynamics of recovered easily follows from ), i.e. a nonlinear set of differential equations with

periodically varying parameters. It is well known that this class of dynamical systems may undergo very interesting

and complex phenomena of nonlinear parametric resonance. It is easy to see that if:

whereas if the integral is greater than one the disease will not die out and there may be such resonances. For

example, considering the periodically varying contact rate as the 'input' of the system one has that the output is a

periodic function whose period is a multiple of the period of the input. This allowed to give a contribution to explain

the poly-annual (typically biennial) epidemic outbreaks of some infectious diseases as interplay between the period

of the contact rate oscillations and the pseudo-period of the damped oscillations near the endemic equilibrium.

Remarkably, in some cases the behavior may also be quasi-periodic or even chaotic.

The MSEIRS model

Variable contact rates and pluriannual or chaotic epidemics
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The SIR model can be modified to model vaccination. Typically these introduce an additional compartment to the

SIR model, , for vaccinated individuals. Below are some examples.

In presence of a communicable diseases, one of main tasks is that of eradicating it via prevention measures and, if

possible, via the establishment of a mass vaccination program. Consider a disease for which the newborn are

vaccinated (with a vaccine giving lifelong immunity) at a rate :

where  is the class of vaccinated subjects. It is immediate to show that:

thus we shall deal with the long term behavior of  and , for which it holds that:

In other words, if

the vaccination program is not successful in eradicating the disease, on the contrary it will remain endemic, although

at lower levels than the case of absence of vaccinations. This means that the mathematical model suggests that for a

disease whose basic reproduction number may be as high as 18 one should vaccinate at least 94.4% of newborns in

order to eradicate the disease.

Modern societies are facing the challenge of "rational" exemption, i.e. the family's decision to not vaccinate children

as a consequence of a "rational" comparison between the perceived risk from infection and that from getting

damages from the vaccine. In order to assess whether this behavior is really rational, i.e. if it can equally lead to the

eradication of the disease, one may simply assume that the vaccination rate is an increasing function of the number

of infectious subjects:

In such a case the eradication condition becomes:

Modelling vaccination

Vaccinating newborns

Vaccination and information
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i.e. the baseline vaccination rate should be greater than the "mandatory vaccination" threshold, which, in case of

exemption, cannot hold. Thus, "rational" exemption might be myopic since it is based only on the current low

incidence due to high vaccine coverage, instead taking into account future resurgence of infection due to coverage

decline.

In case there also are vaccinations of non newborns at a rate ρ the equation for the susceptible and vaccinated subject

has to be modified as follows:

leading to the following eradication condition:

This strategy repeatedly vaccinates a defined age-cohort (such as young children or the elderly) in a susceptible

population over time. Using this strategy, the block of susceptible individuals is then immediately removed, making

it possible to eliminate an infectious disease, (such as measles), from the entire population. Every T time units a

constant fraction p of susceptible subjects is vaccinated in a relatively short (with respect to the dynamics of the

disease) time. This leads to the following impulsive differential equations for the susceptible and vaccinated subjects:

It is easy to see that by setting I = 0 one obtains that the dynamics of the susceptible subjects is given by:

and that the eradication condition is:

Age has a deep influence on the disease spread rate in a population, especially the contact rate. This rate summarizes

the effectiveness of contacts between susceptible and infectious subjects. Taking into account the ages of the

epidemic classes  (to limit ourselves to the susceptible-infectious-removed scheme) such that:

Vaccination of non-newborns

Pulse vaccination strategy

The influence of age: age-structured models



(where  is the maximum admissible age) and their dynamics is not described, as one might think, by

"simple" partial differential equations, but by integro-differential equations:

where:

is the force of infection, which, of course, will depend, though the contact kernel  on the interactions

between the ages.

Complexity is added by the initial conditions for newborns (i.e. for a=0), that are straightforward for infectious and

removed:

but that are nonlocal for the density of susceptible newborns:

where  are the fertilities of the adults.

Moreover, defining now the density of the total population  one obtains:

In the simplest case of equal fertilities in the three epidemic classes, we have that in order to have demographic

equilibrium the following necessary and sufficient condition linking the fertility  with the mortality  must

hold:

and the demographic equilibrium is

https://en.wikipedia.org/wiki/Integro-differential_equation


automatically ensuring the existence of the disease-free solution:

A basic reproduction number can be calculated as the spectral radius of an appropriate functional operator.

In the case of some diseases such as AIDS and Hepatitis B, it is possible for the offspring of infected parents to be

born infected. This transmission of the disease down from the mother is called Vertical Transmission. The influx of

additional members into the infected category can be considered within the model by including a fraction of the

newborn members in the infected compartment.
[11]

Diseases transmitted from human to human indirectly, i.e. malaria spread by way of mosquitoes, are transmitted

through a vector. In these cases, the infection transfers from human to insect and an epidemic model must include

both species, generally requiring many more compartments than a model for direct transmission.
[11]

 For more

information on this type of model see the reference Population Dynamics of Infectious Diseases: Theory and

Applications, by R. M. Anderson.
[12]

Other occurrences which may need to be considered when modeling an epidemic include things such as the

following:
[11]

• Nonhomogeneous mixing
• Variable infectivity
• Distributions that are spatially non-uniform
• Diseases caused by macroparasites

It is important to stress that the deterministic models presented here are valid only in case of sufficiently large

populations, and as such should be used cautiously.
[13]

To be more precise, these models are only valid in the thermodynamic limit, where the population is effectively

infinite. In stochastic models, the long-time endemic equilibrium derived above, does not hold, as there is a finite

probability that the number of infected individuals drops below one in a system. In a true system then, the pathogen

may not propagate, as no host will be infected. But, in deterministic mean-field models, the number of infecteds can

take on real, namely, non-integer values of infected hosts, and the pathogen may still persist in the system with a

number of hosts that is less than one, but more than zero.
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